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COMMENT 

Generalized q-oscillators and their Hopf structures 

C Quesnett and N Vansteenkistes 
Physique Nucl6aite7hboriqueet Physique Mathhatique. Universite Libre de Bruxelles, Campus 
de la Plaine CP229. Boulevard du Triomphe, 8-1050 Brussels, Belgium 

Received 6 September 1995 

Ahstract~ In a recent paper Oh and Singh determined a Hopf structure for a generalized q- 
oscillator algebra. We prove that under some general assumptions. the latter is, apart from some 
algebras isomorphic to sup(2), suq(l,l), or their undeformed count+arts. the only generalized 
deformed oscillator algebra that supports a Hopf s u u c t u ~ .  We show in addition that the latter can 
be equipped with a universal U-matrix, thereby making it into a quasitriangular Hopf algebra 

In a recent paper (henceforth referred to as I and whose equations will be quoted by 
their number preceded by I), Oh and Singh [I] studied the relationships among various 
forms of the q-oscillator algebra and considered the conditions under which it supports 
a Hopf structure. They also presented a generalization of this algebra, together with its 
corresponding Hopf structure. 

In the present comment, our purpose will be twofold. First, we plan to show that 
under some general assumptions about the coalgebra structure and the antipode map, the 
generalized q-oscillator algebra considered by Oh and Singh is, apart from some algebras 
isomorphic to su,(2), suq(l,l), or their undeformed counterparts. the only generalized 
deformed oscillator algebra (GDOA) that supports a Hopf structure. Second, we shall provide 
the universal Rmatrix for this deformed algebra and prove that the corresponding Hopf 
algebra is quasitriangular. 

Definirion. Let A ( G ( N ) )  be the associative algebra generated by the operators (1, a ,  at, N }  
and the function G ( N ) ,  satisfying the commutation relations 

Let us introduce GDOAS as follows 

[ N , a i ]  = a i  [ N ,  a ]  = -a [a,at] = ~ ~ G ( N )  (1) 

(a)' = at (af)' = a  N t  = N (G(N))' = G ( N )  (2) 

and the Hermiticity conditions 

where G(z) is assumed to be an analytic function, which does not vanish identically. 

For 

(3) 
cosh(&(orN + p + l j 2 ) )  

cosh(&/2) 
G ( N ) = [ o r N ~ f + l I , - [ o r N + B l q =  
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where cf and j3 are some real parameters, and q = exp E E R', d(G(N)) reduces to the 
generalization of the q-oscillator algebra considered by Oh and Singh [lit. 

Note that the definition of A ( G ( N ) )  differs from the usual definition of GDOAS 121. 
wherein both a commutation and an anticommutation relation 

C Quesne and N Vunsteenkiste 

[u.u'] = F ( N  + 1) - ~ F ( N )  {U ,  U ' }  = F ( N  + 1) f F ( N )  (4) 
are imposed in terms of some structure function F(z ) ,  assumed to be an analytic function, 
positive on some interval [O, a) (where U E R' may be finite or infinite), and such that 
F(0)  = 0. As in I, the reason for considering only the first relation in (4) is that the two 
relations do not prove compatible with a coalgebra structure. 

As a consequence of its definition, the algebra A ( G ( N ) )  has a Casimir operator 
defined by C = F ( N )  - uta, where F ( N )  is the solution of the difference equation 
F ( N  + 1) - F ( N )  = G ( N ) ,  such that F(0)  = 0. The present definition of GDOAS is 
therefore equivalent to the usual one [2] only in the representation wherein C = 0, i.e. in a 
Fock-type representation. 

Let us now try to endow some of the algebras d(G(N)) with a coalgebra smcture 
and an antipode map, making them into Hopf algebras H. For the coproduct, counit and 
antipode, let us postulate the following expressions: 

(5) 
A(N) = C ~ N  8 1 + c61 B N + y i  8 1 (6) 

3 (U') = - Cia(N)U' s ( U )  = -Cii(N)U S ( N )  = -CizN -k Ci31  (8) 

A (a') =Ut 8 s ( N )  + Cz(N)  8 U' 

€ ( U + )  = o  € ( U )  = CS b ( N )  = cg (7) 

A(u) = a  8 c3(N) + cq(N) 8 a 

where c ; ( N ) ,  i = 1, .  . . ,4, 10,11, are functions of N ,  and ci, i = 5 ,  .. . ,9 ,  12, 13, and 
y are constants to be determined. Such expressions generalize~those found in I for G ( N )  
given by (3), which correspond to 

1 - rr(N+Y)/Z Cl(N) = (cz(N))-' = c3W) = (C'l(N))- - 4 
c5 = cg = c1z = 1 
cg = -c13 1 = - y ClO(N) = (Cll(N))-] = q"2 (9) 

c, = c* = 0 

2 

To remain as general as possible, we shall not start by making any specific assumption 
about G ( N ) ,  except that it satisfies equations (1) and (2). For the moment, we shall also 
disregard the Hermiticity conditions (2) and work with complex algebras. Only at the end 
will conditions (2) be imposed. 

In order that equations (5)-(8) define a Hop{ structure, the so-far undetermined functions 
and parameters must be chosen in such a way that A, E ,  and S satisfy the coassociativity, 
counit and antipode axioms, given in (I35), and that in addition. A and 6 be algebra 
homomorphisms. 

In accordance with equation (9), we shall start by assuming that in equation (6). y takes 
a non-vanishing value. By substituting equation (6) into the coassociativity axiom (I35a), 
and taking into account that A ~~ must be an algebra homomorphism, we directly obtain 

(10) c5 = cs = 1. 

t Actually, Oh and Singh considered a slightly more p n e n l  algebra, wherein the first two relations in (1) are 
also deformed by the invoduction of a real parameter q. We shall not do so here. this additional parmeter can 
be incorporated into the definition of N by renormalizing the latter. 
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To derive the corresponding conditions for ai and a ,  it is useful to expand the functions 
c i (N) ,  i = 1, . . . ,4, of equation (5) into power series 

- 1  
A! 

c ; ( N )  = - C,(A)(O)NA 
A d  

where c,(A'(N) denotes the Ath derivative of ci(N),  and to apply the relation 

if A ( N )  = N @ 1+ 1'8 N+ y l @  1. 
We then obtain in a straightforward way that c i ( N ) ,  i = 1, . . . ,4 ,  must satisfy the equations 

A, B = 0,1,2, ... . (13) cp(O)cja)(o)  = ci cA+B'(y) 

c;(-y)  = 1 i = 1 ,  ..., 4 (14) 

i = 1, ... , 4  

By substituting now equations (5t.(8) into the counit and antipode axioms (1356) 
and (135c), we easily get 

c , = c * = o  c s = - y  (15) 

and 

s ( - N  + 1 - 2 y )  = c2(N) ClO(N) (16) 
c ~ ( - - N - ~ - ~ Y ) = c ~ ( N ) c ~ ~ ( N )  c 4 E N - 2 ~ )  = ~ 3 ( N + l ) c l i ( N )  (17) 
C ] 2  = 1 c,3 = -2y (18) 

respectively. 
It remains to impose that the algebra and coalgebra structures are compatible. By 

applying A or E to both sides of the first two equations contained in ( 1 ) .  we obtain identities, 
while by doing the same with the thirdpne and using equations similar to ( 1 1 )  and (12) for 
G ( N ) ,  we are led to the conditions 

c2(-N - 2 y )  = c , ( N  - l ) c , o ( N )  

and 

G(-y) = 0 .  (21) 
We note that the Hopf axioms directly fix the values of all the constants ci, i = 

5,. . . ,9,12, 13,  in terms of the remaining one y ,  but that the seven functions c ; (N) ,  
i = 1, .. . , 4 ,  10, 11, and G ( N )  are only implicitly determined by equations (13 ) ,  (14), 
(16), (17), and (19)-(21). We shall now proceed to show that the latter can be solved to 
provide explicit expressions for the yet unknown functions of N in terms of y and of some 
additional parameters. 

Considering first the two conditions~in (19), we immediately see that they can only be 
satisfied if there exist some complex constants k,, k z ,  such that 

q ( N +  1) = k l C , ( N )  

Q(N + 1 )  = k2C2(N) 

C4(N) = k;'c4(N - 1) 

c,(N) = k;'c3(N - 1 ) .  
(22) 
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These relations in turn imply that 

q ( N )  = ale'" c z ( N )  = aze""~ c 3 ( N )  = a3e-K2N cq(N) = a4e-'IN (23) 
where K I  = lnkl, ~2 = Inkz, and ai, i = 1, . . . ,4 ,  are some complex parameters. The latter 
are determined by condition (14) as 

C Quesne and N Vamteenkiste 

(yI = eKIY (y2 = e'2Y (yj = e-QY (y4 e-''Y. (24) 
It is then straightforward to check that the functions c i ( N ) ,  i = 1, . . . ,4,  defined by (23) 
and (24), automatically satisfy condition (13). 

By inserting now equations (23) and (24) into conditions (16) and (17), we directly 
obtain the following explicit expressions for c l o ( N )  and c l l ( N ) :  

(25) clo(N) =e-  (xl+X2)(b+Y)+xl c1 I ( N )  = e ( ~ ~ + x d ( N + ~ ) + x t  , 

The same substitution performed in condition (20) transforms the latter into 
(K1 - K z ) a e ( ~ , - ~ ~ ) ~ ~ ( A - B ) ( ~ )  + ( - I ) A - B ( ~ ~  - ,,)A-B,-(K,-Kz)YG(B)(o) = G(A)(~)  

A = 0,1 ,2 , .  . . B = 0 , 1 ,  ..., A .  (26) 
It can be easily shown by induction over A that whenever K I  # K Z ,  the solution of recursion 
relation (26) is given by 

G(A)(0) = 
if A is even 

if A is odd 
(27) 

(KI - K d A  G(O) 
( K I  - K Z ) ~  C O ~ ~ ( ( K I  - KZ)Y)G(O) 

(KI - K d A  G ( Y )  if A is even 
(28) 

I 
[ 

and 

( K I  - K 2 ) A  cath(2(~1 - Kz)y)G(y)  if A is Odd 

(2% 

G'A'(y) = 

where 
G ( y )  = 2 COSh((K1 - Kz)Y)G(O). 

From equation (27) and the Taylor expansion of G ( N ) ,  we then obtain 

Such a function also satisfies (28) and (29), as well as the remaining condition (21). 
Equations (27)-(30) remain valid for~Kl = K Z  provided appropriate limits are taken. In 
such a case, function (30) becomes 

G ( N )  = G(0) ( 1 + - :) K I = K z .  (31) 

Had we taken y = 0 instead of y # 0 in (6), a similar analysis would have led to 

sinh((xl - K Z ) N )  
KI - K z  

if K I  # K Z  G"'(0) G ( N )  = 
GYO) N if K I  = KZ 

and a Hopf structure given by (lo), (15), (18), and (23)-(25), but where y is set equal to 
0. For an appropriate choice of G("(0) (obtained by renormalizing ut and a if necessary), 
such a form of G ( N )  corresponds to the complex q-algebra slq(2) if K I  # K Z ,  and to sI(2) 
if K I  = KZ [3]. 

The remaining step in the construction of algebras A ( G ( N ) )  with a Hopf structure 
consists in imposing the Hermiticity conditions (2) on the algebraic structure. They require 
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that the function G ( N ) ,  defined in (30), (311, or (32). be a real function of N .  For the latter 
choice, we obtain the real forms of s1,(2) or sl(Z), namely suq(2) and suq(l,l), or su(2) and 
su(l.1) [3]. It remains to consider the former choices for y non-real, since the real y case 
comes down to the y = 0 one by changing N into N + y .  For such y values, function (31) 
cannot be Hermitian. It therefore only remains to consider the case where G ( N )  is given 

In such a case, the discussion of the hermiticity conditions is rather involved as G ( N )  
depends upon two complex parameters KI -KZ .  and y ,  in addition to the non-vanishing real 
parameter G (0). By setting 

KI = CI + i n  (33) 

where 61, 01. $2, 92, t. q, y ~ ,  yz E R, the function G(N) ,  defined in (30), can be rewritten 

(34) 

by (30). 

KZ = t z  + im K = K I  - K~ = ~ f  + iq y = yl + iyz 

as 

G ( N )  = G(0) (CO) + iB(N)) 

where 

Hence, G ( N )  is a real function of N if and only if 

Note that from the expressions of u(N)  and B ( N )  given in (35), it is clear that the parameter 
values for which c and d simultaneously vanish should be discarded. 

Condition (36) has now to be worked out by successively combining the cases where 
YI = 0 and M # 0, or VI # 0 and yz # 0, with those where t # 0 and q = 0, = 0 and 
q # 0, or t # 0 and q # 0. For instance, if yl,  M, 6 # 0 and q = 0, equation (35) can be 
written as 

As both sides of this relation have a different dependence on N ,  they must identically 
vanish. Since 5 # 0 by hypothesis, we must therefore have either sin(5y-J = 0 or 
cos(.34) = 0. The first condition leads to yz = k z / t ,  k E 7&, while the second gives 
rise to M = (2k + l)a/(2$), k E Z. 

= 0, we obtain that equation (36) is 
equivalent to 

Similarly, if we assume that yl, yz, q # 0, and 

sin(q(N + YI)) cos(rlyl) = c o s ( r l ( ~  + n)) sin(qyl) (38) 

sin(qN) = 0. (39) 

or, by using some trigonometric identities, 

As q # 0, this relation cannot be satisfied as an operator identity. 
By proceeding in this way, one can easily show the following result. 
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Proposition 1. The algebras A ( G ( N ) )  that support a Hopf structure of type (5)-(8) and are 
not isomorphic to su@, suq(l , l ) ,  ~ ~ ( 2 1 ,  su(l , l ) ,  are determined by equations (10). (15), 
( 1 8 ) .  (23)-(25) and the following conditions: 

C Quesne and N Vansteenkiste 

Remark. The isomorphism referred to in the proposition is an algebra (not a Hopf algebra) 
isomorphism. One can indeed obtain algebras A ( G ( N ) )  that have the commutation relations 
and Hermiticity conditions of suq(2). suq(l , l ) ,  su(Z), su(1,l). but more general expressions 
for the coproduct, the counit and the antipode. 

Comparing the results of proposition 1 with equations ( 3 )  and (9). we notice that 
provided we set I C ~  = -KZ, the Hopf algebra so obtained does coincide with that derived by 
Oh and Singh, the relations between the two sets of parameters being given by ~. 

(41) 
2g + 1 g = ( Y E  n =-. 

cosh(~(2g + 1)/2) 
G(0) = 

cosh(t/2) 2a 
Hence, we have the following, 

Corollary 2. The only algebras d ( G ( N ) )  that support a Hopf structure of type (5)-(8) and 
are not isomophic to suq(2), suq(l,l), su(2), su(l,l), are isomorphic to those considered 
in I. 
Remarks. 
(i) The Hopf algebra obtained here is slightly more general than that constructed by Oh and 
Singh, as it contains the additional parameter 111 + KZ. 

(ii) Some further generalizations of the coproduct given in equations (5) and (6). obtained 
by introducing additional functions of N ,  fail to provide new Hopf algebras. 

Let us now turn ourselves to the second point of this comment, namely the construction 
of the universal Rmatrix for the Oh and Singh Hopf algebra. 

By first omitting the Hermiticity conditions, one obtains the following result. 

Lemma 3. The complex Hopf algebras I.t, defined by equations (I), (5)-(8), ( l o ) ,  (15), 
(18). (23)-(25) and (30), can be made into quasitriangular Hopf algebras by considering the 
element 'JL E 31 0 31, given by 

,((XY)("Y"a)" @ ((XY)-"+Yl'at)" (42) 
where 

Proof: 
the relations 

By direct substitution, one finds that R, defined by (42) and (43), satisfies 

(A 6 id) 72 = RI3R23 (id 8 A) R = RIPRIZ 
T o  A(h) =RA(h)R-' (4) 
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where R I ~ ,  RI,, R z 3  E 'H 0 'H @ 1-1, and for instance Rlz = R 8 I ,  while r is the twist 
0 

By introducing now the additional conditions (40) and x1 +x2  = 0, and changing to Oh 
and Singh's notations (41), we obtain the final result. 

Proposition 4. The Oh and Singh Hopf algebra, defined by equations (1)-(3), (5)-(9), is 
quasitriangular, with the %matrix given by 

operator, s(a 8 b )  = b @ a. 

) ( -(B+$+i&)N ,-(p+i+i*r)N 
x q  m9 r1 -uN@N = q - f [ ( ~ + t ) 2 - ~ ( g n ) z + i w  4 
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